
Master of Computer Applications
(MCA)

Software Engineering Lab

(DMCACO207P24)

Self-Learning Material
(SEM II)

Jaipur National University
Centre for Distance and Online Education

__
Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956
&

NAAC A+ Accredited

Jaipur National University Course Code: DMCACO207P24

Software Engineering Lab

TABLE OF CONTENTS

Course Introduction i

Experiment 1

Requirements Specification Document for an Online

Bookstore

1

Experiment 2

Use Case Diagram for a Public Library System
1

Experiment 3

Design a Class Diagram
2

Experiment 4

Software Testing Plan 3

Experiment 5

Agile Project Management Simulation
3

Experiment 6

Database Design for E-commerce Website
4

Experiment 7

Software Architecture Document
4

Experiment 8

User Interface Design
5

Experiment 9

Performance Optimization Plan
5

Experiment 10

System Integration Scenario
6

Experiment 11

Software Maintenance Plan
6

Experiment 12

Ethical Hacking Exercise
7

Experiment 13

Ethical Hacking Exercise
7

Experiment 14

Ethical Hacking Exercise
8

UnExperiment 15

Ethical Hacking Exercise
8

Experiment 16

Ethical Hacking Exercise
9

Experiment 17

Ethical Hacking Exercise
9

Experiment 18

Ethical Hacking Exercise
10

Experiment 19

Ethical Hacking Exercise
10

Experiment 20

Ethical Hacking Exercise
11

EXPERT COMMITTEE

Prof. Sunil Gupta

(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Deepak Shekhawat

(Department of Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat

(Department of Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Mr. Shish Kumar Dubey

(Department of Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading

Unit Editor

Mr. Pawan Jakhar

(Department of Computer

and Systems Sciences, JNU

Jaipur)

Mr. Satender Singh

(Department of Computer

and Systems Sciences,

JNU Jaipur)

Dr. Satish Pandey

(Department of

Computer and Systems

Sciences, JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

"Clarity is the cornerstone of effective software engineering."

 - Austin Freeman

Software Engineering is a crucial discipline in computer science focused on the systematic

design, development, testing, and maintenance of software systems. This course provides a

comprehensive overview of the principles and practices that guide the creation of robust,

efficient, and reliable software. As technology continues to evolve and software becomes

increasingly integral to all aspects of life, understanding software engineering becomes

essential for anyone involved in the development and management of software systems. This

course aims to equip students with the foundational knowledge and practical skills needed to

navigate the complexities of software engineering effectively.

The course begins with an introduction to the software development lifecycle (SDLC),

covering various models such as Waterfall, Agile, and DevOps. Students will explore how

these methodologies impact project management, development processes, and team

dynamics. The Waterfall model, with its linear and sequential approach, contrasts with Agile

methodologies, which emphasize iterative development, flexibility, and collaboration.

DevOps, combining development and operations practices, highlights the importance of

continuous integration and delivery in modern software projects. By understanding these

models, students will gain insights into how to manage and execute software projects in

different contexts.

In addition to project management, the course delves into key software engineering practices,

including requirements analysis, design, implementation, testing, and maintenance.

Implementation involves writing code and integrating various software modules, while

testing ensures that the software meets quality standards and functions correctly. Maintenance

addresses the ongoing support and enhancement of software systems post-deployment.

The course also emphasizes best practices in software engineering, including version control,

documentation, and code quality. Students will learn about tools and techniques for managing

code changes and collaborating with team members, such as Git and GitHub

Course Outcomes:

At the completion of the course, a student will be able to:

1. Learn different software engineering approaches to resolve different software crises

like failure in operation, non-meeting of requirements, delayed delivery, over budget.

2. Compare different software process models to find the appropriate one.

3. Apply 4 GL techniques to develop software systems.

4. Develop and manage software projects from project initiation to project closure.

5. Develop quality software systems with the latest tools and techniques.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the

materials reproduced in this book have been tracked down as much as possible. The editors

apologize for any violation that may have happened, and they will be happy to rectify any

such material in later versions of this book.

1

Question 1: Requirements Specification Document for an Online Bookstore

Program Statement:

Develop a comprehensive Requirements Specification Document for an online bookstore.

The system should allow users to create accounts, browse books by category, add books to a

shopping cart, and complete purchases. The system should also provide administrative

functionalities such as adding new books, managing inventory, and viewing sales reports.

Detailed Requirements:

 User Account Management: Registration, login, password recovery, and user profile

management.

 Book Browsing: Ability to search for books by title, author, or ISBN, and filter

results by genre, price, and publication date.

 Shopping Cart: Users should be able to add items to the cart, modify quantities, and

remove items.

 Checkout Process: Integration with a payment gateway for processing credit card

transactions, and order confirmation via email.

 Administrative Functions: Secure login for administrators, functionalities to add or

remove books, update book details, and access to a dashboard that displays real-time

data on sales and inventory levels.

Solution Hints: Start by defining the scope of the system and identifying all stakeholders.

Use tools like user interviews and competitive analysis to gather requirements. Document the

functional requirements clearly with use cases or user stories. For non-functional

requirements, consider aspects like scalability, security (e.g., use of HTTPS, data encryption),

and compliance with data protection regulations. Use diagrams where applicable, such as

entity-relationship diagrams for database design and sequence diagrams to illustrate

processes.

Question 2: Use Case Diagram for a Public Library System

Program Statement:

Design a use case diagram that captures the interactions between librarians, members, and the

library system. The system should support book lending, book returns, member registration,

and fine payment.

Detailed Requirements:

 Member Registration: Capture member details and issue library cards.

2

 Book Lending: Check out books to members, including due date assignment and

availability checks.

 Book Returns: Handle the return of borrowed books, including condition checks and

fine calculations for late returns.

 Fine Payment: Allow members to pay fines for late returns or damaged books.

 System Maintenance: Regular updates to the book catalog, managing member

records, and generating reports on book loans and returns.

Solution Hints: Begin with identifying the primary actors (members, librarians) and

secondary actors (online payment systems, email systems for notifications). Define the main

interactions these actors have with the system. For each use case, write a brief description

that includes the main success scenario and any alternative flows. Consider the conditions

under which exceptions might occur and how the system should respond. Diagrammatically

represent these interactions in a use case diagram using UML notation. Focus on clarity and

completeness to ensure that all user interactions with the system are accurately represented.

Question 3: Design a Class Diagram

Program Statement:

Create a class diagram for a ride-sharing application that includes user management, ride

booking, and payment processing.

Detailed Requirements:

 User Management: Users can be riders or drivers. Include attributes like name,

contact details, and user ratings.

 Ride Booking: Ability to request a ride, assign a driver, and calculate the fare based

on distance.

 Payment Processing: Support for multiple payment methods, including credit card

and mobile wallet.

Solution Hints: Identify the main classes and their relationships. Define methods and

attributes for each class that capture the essential functionalities. Consider using inheritance

where applicable, such as a base class for users from which riders and drivers can derive.

3

Question 4: Software Testing Plan

Program Statement:

Develop a detailed testing plan for a new social media platform that includes functional

testing, integration testing, and usability testing.

Detailed Requirements:

 Functional Testing: Test individual features like posting updates, liking posts, and

adding friends.

 Integration Testing: Ensure that different modules (e.g., user interface, database)

work together as expected.

 Usability Testing: Evaluate the platform’s ease of use with target audience groups.

Solution Hints: Outline different testing phases and the techniques to be used. For each type

of testing, specify the scope, objectives, and methods. Prepare test cases that cover various

user scenarios and possible edge cases.

Question 5: Agile Project Management Simulation

Program Statement:

Simulate an agile project management environment where students must plan and execute a

sprint for a hypothetical software project.

Detailed Requirements:

 Sprint Planning: Define sprint goals and tasks based on the product backlog.

 Daily Stand-ups: Organize daily meetings to track progress and address

impediments.

 Sprint Review: Conduct a meeting at the end of the sprint to demonstrate completed

work.

Solution Hints: Use agile methodologies like Scrum or Kanban. Emphasize the importance

of communication, flexibility, and continuous improvement. Encourage students to use tools

like JIRA or Trello for task management.

4

Question 6: Database Design for E-commerce Website

Program Statement:

Design a database schema for an e-commerce website that handles products, orders,

customers, and shipping.

Detailed Requirements:

 Products: Include tables for product information, categories, and inventory levels.

 Orders: Design tables to handle order placement, order status, and payment history.

 Customers: Maintain customer profiles, including shipping addresses and order

history.

 Shipping: Include logistics information, such as shipping methods, costs, and

delivery status.

Solution Hints: Focus on creating a normalized database schema to avoid redundancy and

ensure data integrity. Use foreign keys to establish relationships between tables. Consider

aspects like scalability and security for handling sensitive information.

Question 7: Software Architecture Document

Program Statement:

Create a software architecture document for a health monitoring system that connects

patients, doctors, and medical devices.

Detailed Requirements:

 System Overview: Describe the system’s structure and its main components.

 High-Level Components: Detail components such as user interfaces, databases, and

external integrations.

 Communication: Explain how components communicate, including any APIs or

protocols used.

Solution Hints: Use architectural views to describe different aspects of the system, such as

logical, development, and deployment views. Include diagrams to illustrate complex concepts

and interactions.

5

Question 8: User Interface Design

Program Statement:

Design the user interface for a mobile app that allows users to book fitness classes, track

progress, and connect with personal trainers.

Detailed Requirements:

 Booking System: Easy navigation for class schedules and booking options.

 Progress Tracker: Visual representations of user progress, such as graphs and

statistics.

 Personal Trainer Connection: Features to message trainers, view trainer profiles,

and schedule sessions.

Solution Hints: Focus on usability and aesthetic appeal. Use tools like Adobe XD or Sketch

for prototyping. Consider user feedback to refine the design, ensuring it’s intuitive and

engaging.

Question 9: Performance Optimization Plan

Program Statement:

Develop a plan to optimize the performance of a large-scale web application focusing on load

times and server response times.

Detailed Requirements:

 Frontend Optimization: Techniques such as minifying JavaScript and CSS,

optimizing images, and using asynchronous loading.

 Backend Optimization: Database indexing, query optimization, and efficient use of

caching.

 Monitoring: Tools and practices to monitor performance and identify bottlenecks.

Solution Hints: Establish performance benchmarks and identify key performance indicators

(KPIs). Use tools like Google Lighthouse or WebPageTest for frontend analysis and database

profiling tools for backend optimizations.

6

Question 10: System Integration Scenario

Program Statement:

Outline a scenario where students must integrate an existing inventory management system

with a new online sales platform.

Detailed Requirements:

 API Usage: Define how the systems will communicate via APIs, including necessary

endpoints.

 Data Synchronization: Ensure consistent data across systems, handling conflicts and

duplicates.

 Error Handling: Develop strategies to manage errors and exceptions during

integration.

Solution Hints: Use middleware or an ESB (Enterprise Service Bus) for integration. Focus

on data flow diagrams and sequence diagrams to visualize the integration process. Consider

security aspects, particularly in API authentication and authorization.

Question 11: Software Maintenance Plan

Program Statement:

Prepare a maintenance plan for a legacy software system that needs updating and

optimization to meet current technological standards.

Detailed Requirements:

 Assessment: Conduct a thorough assessment of the current system to identify areas

for improvement.

 Update Strategy: Plan for gradual updates without disrupting the existing user base.

 Documentation: Update all documentation to reflect changes and provide training for

users on new features.

Solution Hints: Prioritize updates based on urgency and impact. Use version control systems

to manage changes and test updates in a staging environment before deployment.

7

Question 12: Ethical Hacking Exercise

Program Statement:

Conduct an ethical hacking exercise to identify vulnerabilities in a simulated corporate

network.

Detailed Requirements:

 Vulnerability Scanning: Use tools like Nmap or Nessus to scan the network for

vulnerabilities.

 Penetration Testing: Attempt to exploit identified vulnerabilities to assess the

impact.

 Report and Fix: Prepare a detailed report of findings and suggest measures to

mitigate risks.

Solution Hints: Focus on common vulnerabilities like SQL injection, XSS, and buffer

overflows. Use a systematic approach to document each test and its outcomes. Ensure that all

testing is authorized and within ethical boundaries.

Question 13: Code Refactoring Exercise

Program Statement:

Refactor a given piece of poorly written software code to improve readability,

maintainability, and performance.

Detailed Requirements:

 Identify Issues:Analyze the code to identify bad practices such as code duplication,

long methods, and magic numbers.

 Refactoring Techniques: Apply techniques like extracting methods, renaming

variables, and reducing dependencies.

 Testing: Ensure the refactored code passes all existing tests and behaves as expected.

Solution Hints: Use code analysis tools to help identify problem areas. Maintain a test-

driven approach to ensure that changes do not affect the functionality. Document changes for

future reference.

8

Question 14: Disaster Recovery Plan

Program Statement:

Develop a comprehensive disaster recovery plan for an IT infrastructure that supports critical

business operations.

Detailed Requirements:

 Risk Assessment: Identify potential threats and vulnerabilities that could impact

business continuity.

 Recovery Strategies: Outline strategies for data backup, system recovery, and

alternative work arrangements.

 Plan Testing: Describe the procedures for testing the plan to ensure its effectiveness.

Solution Hints: Include details on recovery point objectives (RPO) and recovery time

objectives (RTO). Use scenarios to illustrate how the plan would be executed in different

types of disasters. Regularly update the plan to incorporate new technologies and changes in

the business environment.

Question 15: Mobile Application Development

Program Statement:

Develop a plan for creating a mobile application that assists users with public transportation,

including schedules, ticket booking, and real-time updates.

Detailed Requirements:

 User Interface: Design an intuitive interface that provides easy access to all

functionalities.

 Functionality: Include features for viewing schedules, booking tickets, and receiving

notifications about delays or changes.

 Integration: Ensure the app integrates with existing transportation APIs for real-time

data.

Solution Hints: Use mobile development frameworks like React Native for cross-platform

compatibility. Focus on user experience design to ensure the app is accessible and easy to

use. Test extensively on different devices to ensure functionality and performance.

9

Question 16: Security Audit for a Web Application

Program Statement:

Conduct a security audit on a web application to identify security threats and vulnerabilities.

Propose mitigation strategies for each identified issue.

Detailed Requirements:

 Threat Identification: Scan the application for common vulnerabilities such as SQL

injection, CSRF, and XSS.

 Security Assessment: Evaluate authentication, authorization, and encryption

mechanisms.

 Mitigation Strategies: Develop detailed plans to address and mitigate each

vulnerability.

Solution Hints: Use automated security scanning tools to identify vulnerabilities and manual

testing to confirm and explore these issues further. Discuss the principles of secure coding

practices and the importance of regular security updates and patches. For each vulnerability,

provide a theoretical mitigation strategy that could include both code fixes and changes to

deployment environments.

Question 17: Scalability Testing

Program Statement:

Plan and execute scalability testing for a high-traffic e-commerce site to ensure it can handle

increased loads, particularly during peak shopping periods.

Detailed Requirements:

 Load Testing: Simulate varying loads on the server to measure response times and

system behavior under stress.

 Scalability Strategies: Evaluate and propose scaling strategies, such as horizontal

scaling, vertical scaling, and the use of load balancers.

 Performance Metrics: Define and measure key performance indicators such as page

load times, transaction completion rate, and system downtime.

Solution Hints: Use tools like JMeter or LoadRunner for load testing. Discuss the concept of

cloud scalability with services like AWS Elastic Load Balancing or Google Cloud Load

Balancing. Analyze the results to recommend infrastructure adjustments and software

optimizations that help manage larger user volumes efficiently.

10

Question 18: DevOps Pipeline Setup

Program Statement:

Design and set up a DevOps pipeline for continuous integration and continuous deployment

(CI/CD) for a multi-service application.

Detailed Requirements:

 Tool Selection: Choose appropriate tools for version control, build automation,

testing, and deployment.

 Pipeline Configuration: Configure the pipeline stages, including code checkout,

build, test automation, and deployment.

 Monitoring and Feedback: Integrate monitoring tools and set up feedback

mechanisms for ongoing improvement.

Solution Hints: Focus on integrating tools like Git for version control, Jenkins for CI/CD,

Selenium for automated testing, and Docker for containerization. Highlight the importance of

feedback loops using monitoring tools such as Prometheus or Grafana for system metrics.

Discuss best practices in CI/CD to minimize deployment risks and improve release quality.

Question 19: AI-Powered Feature Implementation

Program Statement:

Implement an AI-powered feature in an existing application, such as a recommendation

system for a shopping site or a chatbot for customer service.

Detailed Requirements:

 AI Model Choice: Choose and justify an appropriate AI model based on the feature’s

requirements.

 Integration Approach: Detail the steps for integrating the AI model into the existing

system architecture.

 Testing and Evaluation: Outline methods for testing the AI feature and evaluating its

performance against predefined metrics.

Solution Hints: Discuss different machine learning models like neural networks for a

recommendation system or NLP models for a chatbot. Use APIs like TensorFlow or PyTorch

for model development and integration. Focus on the importance of data quality, model

training, and fine-tuning. Include validation techniques to measure the effectiveness of the AI

feature in real-world scenarios.

11

Question 20: Legacy System Modernization

Program Statement:

Develop a detailed plan for modernizing a legacy banking system to improve performance,

security, and user experience.

Detailed Requirements:

 System Assessment:Analyze the current system to identify bottlenecks, security

flaws, and areas needing UX improvement.

 Modernization Strategy: Choose between re-platforming, refactoring, or replacing

components of the system.

 Implementation Roadmap: Create a phased roadmap for the modernization process,

including risk assessment and mitigation.

Solution Hints: Evaluate the benefits and drawbacks of different modernization strategies,

considering factors such as cost, time, and impact on current operations. Discuss the use of

modern technologies like microservices architecture, cloud computing, and API-first design.

Plan for thorough testing phases to ensure the new system meets all functional and non-

functional requirements without disrupting existing services.

	32d482c10fb5ef435b8bc2c34353e3e0c53555542c69231071c2c3a69bf8c995.pdf
	0a90ffb4d693126b8301bd47c9140534d9043338132ad1028dec4ef08f9e9136.pdf
	32d482c10fb5ef435b8bc2c34353e3e0c53555542c69231071c2c3a69bf8c995.pdf

